1,342 research outputs found

    Promoting visual long-term memories: When do we learn from repetitions of visuospatial arrays?

    Full text link
    Repeated exposure is assumed to promote long-term learning. This is demonstrated by the so-called "Hebb-effect": when short lists of verbal or spatial materials are presented sequentially for an immediate serial recall test, recall improves with list repetition. This repetition benefit, however, is not ubiquitous. Previous studies found little or no performance improvement for repetitions of visuospatial arrays (e.g., arrays of colored squares). Across eight experiments with college students and Prolific samples, we investigated which factors promote visuospatial learning by testing all combinations of variables distinguishing between visual-array tasks (brief + simultaneous presentation + a single recognition test) and tasks showing the Hebb effect (slow + sequential presentation + recall test probing all items). Participants profited from repetitions when all items were tested with a recall procedure, but not if the test consisted of recognition. Hence, the key to promote long-term learning is to recall all of the memorized information over the short-term

    Does articulatory rehearsal help immediate serial recall?

    Full text link
    Articulatory rehearsal is assumed to benefit verbal working memory. Yet, there is no experimental evidence supporting a causal link between rehearsal and serial-order memory, which is one of the hallmarks of working memory functioning. Across four experiments, we tested the hypothesis that rehearsal improves working memory by asking participants to rehearse overtly and by instructing different rehearsal schedules. In Experiments 1a, 1b, and 2, we compared an instructed cumulative-rehearsal condition against a free-rehearsal condition. The instruction increased the prevalence of cumulative rehearsal, but recall performance remained unchanged or decreased compared to the free-rehearsal baseline. Experiment 2 also tested the impact of a fixed rehearsal instruction; this condition yielded substantial performance costs compared to the baseline. Experiment 3 tested whether rehearsals (according to an experimenter-controlled protocol) are beneficial compared to a matched articulatory suppression condition that blocked rehearsals of the memoranda. Again, rehearsing the memoranda yielded no benefit compared to articulatory suppression. In sum, our results are incompatible with the notion that rehearsal is beneficial to working memory

    The eyes don’t have it: Eye movements are unlikely to reflect refreshing in working memory

    Full text link
    There is a growing interest in specifying the mechanisms underlying refreshing, i.e., the use of attention to keep working memory (WM) contents accessible. Here, we examined whether participants’ visual fixations during the retention interval of a WM task indicate the current focus of internal attention, thereby serving as an online measure of refreshing. Eye movements were recorded while participants studied and maintained an array of colored dots followed by probed recall of one (Experiments 1A and 1B) or all (Experiment 2) of the memoranda via a continuous color wheel. Experiments 1A and 2 entailed an unfilled retention interval in which refreshing is assumed to occur spontaneously, and Experiment 1B entailed a retention interval embedded with cues prompting the sequential refreshment of a subset of the memoranda. During the retention interval, fixations revisited the locations occupied by the memoranda, consistent with a looking-at-nothing phenomenon in WM, but the pattern was only evident when placeholders were onscreen in Experiment 2, indicating that most of these fixations may largely reflect random gaze. Furthermore, spontaneous fixations did not predict recall precision (Experiments 1A and 2), even when ensuring that they did not reflect random gaze (Experiment 2). In Experiment 1B, refreshing cues increased fixations to the eventually tested target and predicted better recall precision, which interacted with an overall benefit of target fixations, such that the benefit of fixations decreased as the number of refreshing cues increased. Thus, fixations under spontaneous conditions had no credible effect on recall precision, whereas the beneficial effect of fixations under instructed refreshing conditions may indicate situations in which cues were disregarded. Consequently, we conclude that eye movements do not seem suitable as an online measure of refreshing

    Age differences in the efficiency of filtering and ignoring distraction in visual working memory

    Get PDF
    Healthy aging is associated with decline in the ability to maintain visual information in working memory (WM). We examined whether this decline can be explained by decreases in the ability to filter distraction during encoding or to ignore distraction during memory maintenance. Distraction consisted of irrelevant objects (Exp. 1) or irrelevant features of an object (Exp. 2). In Experiment 1, participants completed a spatial WM task requiring remembering locations on a grid. During encoding or during maintenance, irrelevant distractor positions were presented. In Experiment 2, participants encoded either single-feature (colors or orientations) or multifeature objects (colored triangles) and later reproduced one of these features using a continuous scale. In multifeature blocks, a precue appeared before encoding or a retrocue appeared during memory maintenance indicating with 100% certainty to the to-be-tested feature, thereby enabling filtering and ignoring of the irrelevant (not-cued) feature, respectively. There were no age-related deficits in the efficiency of filtering and ignoring distractor objects (Exp. 1) and of filtering irrelevant features (Exp. 2). Both younger and older adults could not ignore irrelevant features when cued with a retrocue. Overall, our results provide no evidence for an aging deficit in using attention to manage visual WM

    Where to attend next: guiding refreshing of visual, spatial, and verbal representations in working memory

    Full text link
    One of the functions that attention may serve in working memory (WM) is boosting information accessibility, a mechanism known as attentional refreshing. Refreshing is assumed to be a domain-general process operating on visual, spatial, and verbal representations alike. So far, few studies have directly manipulated refreshing of individual WM representations to measure the WM benefits of refreshing. Recently, a guided-refreshing method was developed, which consists of presenting cues during the retention interval of a WM task to instruct people to refresh (i.e., attend to) the cued items. Using a continuous-color reconstruction task, previous studies demonstrated that the error in reporting a color varies linearly with the frequency with which it was refreshed. Here, we extend this approach to assess the WM benefits of refreshing different representation types, from colors to spatial locations and words. Across six experiments, we show that refreshing frequency modulates performance in all stimulus domains in accordance with the tenet that refreshing is a domain-general process in WM. The benefits of refreshing were, however, larger for visual-spatial than verbal materials

    Categorical distinctiveness constrains the labeling benefit in visual working memory

    Full text link
    Describing our visual experiences improves their retention in visual working memory, yielding a labeling benefit. Labels vary, however, in categorical distinctiveness: they can be applied broadly or narrowly to categorize stimuli. Does categorical distin

    Repetition learning is neither a continuous nor an implicit process

    Full text link
    Learning advances through repetition. A classic paradigm for studying this process is the Hebb repetition effect: Immediate serial recall performance improves for lists presented repeatedly as compared to nonrepeated lists. Learning in the Hebb paradigm has been described as a slow but continuous accumulation of long-term memory traces over repetitions [e.g., Page & Norris, Phil. Trans. R. Soc. B 364, 3737–3753 (2009)]. Furthermore, it has been argued that Hebb repetition learning requires no awareness of the repetition, thereby being an instance of implicit learning [e.g., Guérard et al., Mem. Cogn. 39, 1012–1022 (2011); McKelvie, J. Gen. Psychol. 114, 75–88 (1987)]. While these assumptions match the data from a group-level perspective, another picture emerges when analyzing data on the individual level. We used a Bayesian hierarchical mixture modeling approach to describe individual learning curves. In two preregistered experiments, using a visual and a verbal Hebb repetition task, we demonstrate that 1) individual learning curves show an abrupt onset followed by rapid growth, with a variable time for the onset of learning across individuals, and that 2) learning onset was preceded by, or coincided with, participants becoming aware of the repetition. These results imply that repetition learning is not implicit and that the appearance of a slow and gradual accumulation of knowledge is an artifact of averaging over individual learning curves
    • …
    corecore